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Abstract
While difference equations deal with discrete calculus and differential equations
with continuous calculus, so-called q-difference equations are considered when
studying q-calculus. In this paper, we obtain certain oscillation criteria for
second-order q-difference equations, among them a q-calculus version of the
famous Kneser theorem.

PACS numbers: 02.30.Hq, 02.30.Gp, 02.30.Ks, 02.30.Lt, 02.20.Uw
Mathematics Subject Classification: 39A13, 39A12, 34C10, 34K11

1. Introduction

We shall be interested in obtaining Kneser-type oscillation criteria for second-order
q-difference equations of the form

D2
qx + r(t)xσ = 0, t ∈ T := qN0 := {qk : k ∈ N0} with q > 1, (1.1)

where for t ∈ T,

Dqx(t) = (xσ (t) − x(t))/µ(t), xσ (t) = x(σ (t)), σ (t) = qt, µ(t) = σ(t) − t.

Before we give the precise formulation of our Kneser-type oscillation criterion for q-difference
equations, we mention a few background details which serve to motivate the results of this
paper. Equations of the type

x ′′ + r(t)x = 0, t ∈ R (1.2)

and

�2x + r(t)xσ = 0, t ∈ Z, (1.3)

where �x = xσ − x and xσ (t) = x(t + 1) for t ∈ Z have been studied in the continuous and
discrete settings, respectively.
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Among the many topics related to the study of equation (1.2), one which has held the
interest of mathematicians for over a century is the study of the existence and location of the
number of zeros of its solutions. In particular, the search for comparison-type oscillation and
nonoscillation criteria, that is to say, necessary and/or sufficient conditions on the function
for real-valued solutions of (1.2) to have (or not to have) an infinite number of zeros in the
interval has long been studied in both the continuous and discrete settings.

Historically, the development of such comparison-type oscillation criteria for
equation (1.2) has its foundations in the classic 1836 memoir of Sturm [30], where he also
developed a first comparison criterion as

r(t) � r0 > 0 for oscillation

and

r(t) � 0 for nonoscillation.

However, the general importance and usefulness of Sturm’s work was not properly recognized
until much later when it was extended in a variety of ways in a series of papers by Bôcher
[7–11]. The discovery of another famous comparison-type criterion is due to Kneser [24] in
1893 who established that

t2r(t) � 1 + ε

4
for some ε > 0 implies oscillation

while

t2r(t) � 1

4
implies nonoscillation.

Later Fite [17] considered the conditions

r(t) > 0 and
∫ ∞

r(s) ds = lim
t→∞

∫ t

r(s) ds = ∞
and showed that they yield oscillation. In [21], Hille assumed

r(t) > 0 and
∫ ∞

r(s) ds = lim
t→∞

∫ t

r(s) ds exists,

and gave a generalized version of Kneser’s result as

tP (t) � 1 + ε

4
implies oscillation

while

tP (t) � 1

4
implies nonoscillation,

where

P(t) =
∫ ∞

t

r(s) ds.

The work of Fite and Hille generated a great deal of activity in the search for further
oscillation criteria. For example, the condition r(t) > 0 in Fite’s result was removed by
Wintner [34], and in the ‘oscillatory part’ of Hille’s result, Moore [27] replaced r(t) > 0
by the assumption that tP (t) is bounded. For further extensions of these results we refer to
Wintner [32, 33], Reid [28, chapter 2] and [29], Hartman [19, 20] and Gesztesy and Ünal [18].
For results connected to the discrete equation (1.3), we refer to [1, 26].

Most of the above-described results are based on the following two theorems that we are
citing here for the convenience of the reader. In theorem 1 (differential equations), σ(t) = t ,
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in theorem 2 (difference equations), σ(t) = t + 1, and in theorem 3 (q-difference equations),
σ(t) = qt . We also put xσ = x ◦ σ .

Theorem 1. The differential equation

x ′′ +
b

tσ (t)
xσ = 0 is oscillatory iff b >

1

4
.

Theorem 2. The difference equation

�2x +
b

tσ (t)
xσ = 0 is oscillatory iff b >

1

4
.

In this paper we prove the following theorem which is the basis for our Kneser-type
oscillation criteria for (1.1).

Theorem 3. The q-difference equation

D2
qx +

b

tσ (t)
xσ = 0 is oscillatory iff b >

1

(
√

q + 1)2
.

Note that the critical, and in the continuous and discrete cases well-known, constant 1/4
becomes 1/(

√
q + 1)2 in q-calculus. Note also how theorem 3 nicely resembles the continuous

result of theorem 1 as q → 1. Note finally that theorem 3 solves an open problem connected
to the theory of dynamic equations on time scales: it has been shown in [15, example 4.6] that

x�� +
b

tσ (t)
xσ = 0 is oscillatory if b >

1

4

for every so-called dynamic equation on any so-called time scale [12, 14]. (Note that x� = x ′,
x� = �x and x� = Dqx if the ‘time scale’ T is equal to R, Z, and qN0 , respectively.) It has
also been conjectured that the ‘if’ can be replaced by ‘iff’ for every dynamic equation on any
time scale. Our results show that this conjecture is wrong. In fact, e.g., if q = 4, then the
critical constant is 1/9, while if q = 100, the critical constant is 1/121.

We will prove theorem 3 in section 3, after recalling some preliminaries about q-calculus
and Euler–Cauchy q-difference equations in section 2. Section 3 also contains Kneser’s
theorem for q-difference equations, which is essentially a simple consequence of theorem 3.
Finally, in section 4 we provide a generalization of theorem 3. On the basis of this
generalization, further Kneser-type oscillation criteria are given.

2. Preliminaries on q-calculus

The purpose of this section is to outline some of the basic definitions and concepts of
q-difference equations. Some of the material in this section is contained in the excellent
monographs by Gaspard Bangerezako [3] and Viktor Kac and Pokman Cheung [23] and in the
books about dynamic equations on time scales by Martin Bohner and Allan Peterson [12, 14]
with slight modifications (see also [13]). For other results related to q-difference equations
see [2, 4–6, 16, 25, 31].

The expression

Dqf (t) = f (qt) − f (t)

(q − 1)t
(2.1)
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is called the q-derivative (or Jackson derivative [3, formula (1.7)] or [22, 23]) of the function
f : T → R. The q-derivatives of the product and the quotient of f, g : T → R are given on
T by

Dq(fg) = (Dqf )g + f σ (Dqg) = f (Dqg) + (Dqf )gσ (2.2)

and

Dq

(
f

g

)
= (Dqf )g − f (Dqg)

ggσ
= (Dqf )gσ − f σ (Dqg)

ggσ
, (2.3)

and it follows from (2.1) that the q-derivative of f satisfies

f σ (t) = f (qt) = f (t) + (q − 1)tDqf (t) for t ∈ T. (2.4)

Example 1. The q-derivative of t2 is (q + 1)t , the q-derivative of 1
t

is − 1
qt2 , and the

q-derivative of ln t is ln q

(q−1)t
.

In order to prove theorem 3, we will use (2.4) to rewrite (1.1) as a special case of an
Euler–Cauchy equation. With this in mind, we now introduce and study the general form of
the Euler–Cauchy q-difference equation on T as

tσ (t)D2
qx + atDqx + bx = 0, where a, b ∈ R, (2.5)

subject to the condition

q − a(q − 1) + b(q − 1)2 �= 0. (2.6)

By using the formulae (2.1) and

D2
qx(t) = x(q2t) − (q + 1)x(qt) + qx(t)

q(q − 1)2t2
,

we can rewrite (2.5) as

x(q2t) − 2rx(qt) + (r2 − d)x(t) = 0, (2.7)

where

r = q + 1 − a(q − 1)

2
and d =

[(
a − 1

2

)2

− b

]
(q − 1)2. (2.8)

When rewriting (2.5) as (2.7), the relations

r = 1 − (a − 1)(q − 1)

2
and r2 − d = q − a(q − 1) + b(q − 1)2 (2.9)

are useful and easy to check.

Lemma 1. Suppose r and d are defined by (2.8). If

α2 − 2rα + r2 − d = 0, (2.10)

then

xα(t) := αlogq t , t ∈ T

solves the Euler–Cauchy equation (2.5).

Proof. Since, for x = xα ,

x(qt) = αlogq (qt) = αlogq q+logq t = α1+logq t = ααlogq t = αx(t)

and

x(q2t) − 2rx(qt) + (r2 − d)x(t) = (α2 − 2rα + r2 − d)x(t) = 0,

the claim follows. �
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Note also that, since α �= 0 by (2.6), (2.9) and (2.10), we can rewrite xα as

xα(t) = αlogq t = (sgn α)logq t t logq |α|.

Now we can give the general solution of (2.5) depending on the sign of d.

Theorem 4. Assume that (2.6) holds. Suppose r and d are defined by (2.8). Then the general
solution of (2.5) is given, where c1, c2 ∈ R,

(i) if d > 0, putting α1 = r +
√

d and α2 = r − √
d, by

x(t) = c1α
logq t

1 + c2α
logq t

2 ,

(ii) if d = 0, putting α = r , by

x(t) = (c1 ln t + c2)α
logq t ,

(iii) and if d < 0, putting α = r + i
√−d , by

x(t) = |α|logq t (c1 cos(θ logq t) + c2 sin(θ logq t)), where θ = cos−1 Re α

|α| .

Proof. If d > 0, since α1 and α2 are solutions of (2.10), lemma 1 yields that xα1 and xα2 are
two solutions of (2.5). Next, if d = 0, since α is a solution of (2.10), lemma 1 yields that xα

solves (2.5). Now define x(t) = xα(t) ln t . Then

x(qt) = αxα(t) [ln q + ln t] = α [x(t) + xα(t) ln q]

and

x(q2t) − 2rx(qt) + (r2 − d)x(t) = x(q2t) − 2rx(qt) + r2x(t)

= αx(qt) + αxα(qt) ln q − 2rx(qt) + r2x(t)

= (α − 2r)α[x(t) + xα(t) ln q] + α2xα(t) ln q + r2x(t)

= (α2 − 2rα + r2)x(t) + 2α(α − r)xα(t) ln q

= 0

yield that x also solves (2.5). Finally, assume d < 0. Note that Re α/|α| ∈ (−1, 1) so that
there exists θ ∈ (0, π) with cos θ = Re α/|α|. We put

f (t) = cos(θ logq t), g(t) = sin(θ logq t) and x = x|α|f, y = x|α|g.

Now

f (q2t) = f (qt) cos θ − g(qt) sin θ, f (t) = f (qt) cos θ + g(qt) sin θ,

g(q2t) = g(qt) cos θ + f (qt) sin θ, g(t) = g(qt) cos θ − f (qt) sin θ

so that

x(q2t) − 2rx(qt) + (r2 − d)x(t) = x(q2t) − 2rx(qt) + |α|2x(t)

= |α|[x(qt) cos θ − y(qt) sin θ ] − 2rx(qt) + |α|[x(qt) cos θ + y(qt) sin θ ]

= 2|α|x(qt) cos θ − 2rx(qt)

= 2[|α| cos θ − Re α]x(qt)

= 0

and similarly

y(q2t) − 2ry(qt) + (r2 − d)y(t) = 2[|α| cos θ − Re α]y(qt) = 0,

and hence x and y are solutions of (2.5).
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We calculate µW(x, y) between each two solutions, where the Wronskian [12,
definition 3.5] is defined by W(x, y) = x(Dqy) − (Dqx)y, as

2
√

d(r2 − d)logq t , r(r2 − d)logq t ln q, and
√

r2 + d(r2 − d)logq t sin θ,

respectively. Condition (2.6) together with (2.9) now ensures that none of these Wronskians in
their respective cases is ever zero. Thus (see [12, theorem 3.7]), each of the three pairs given
above form indeed fundamental sets of solutions in their respective cases, more precisely: in
each of the three cases, the solution z of the initial value problem

D2
qz + r(t)zσ = 0, z(t0) = z0, Dqz(t0) = z̃0,

where t0 ∈ T is fixed, is given (and this can be checked easily) by

z(t) = Dqy(t0)z0 − y(t0)z̃0

W(x, y)(t0)
x(t) +

x(t0)z̃0 − Dqx(t0)z0

W(x, y)(t0)
y(t).

This completes the proof. �

3. Kneser’s theorem

We recall that a solution x of (1.1) has a generalized zero at t in the case x(t) = 0. We
say that x has a generalized zero in the interval (t, σ (t)) in the case x(t)x(σ (t)) < 0. We
say that (1.1) is disconjugate on the interval [c, d], if there is no nontrivial solution of (1.1)
with two (or more) generalized zeros in [c, d]. Equation (1.1) is said to be nonoscillatory on
[τ,∞) if there exists c ∈ [τ,∞) such that this equation is disconjugate on [c, d] for every
c < d. In the opposite case (1.1) is said to be oscillatory on [τ,∞). Oscillation of (1.1)
may equivalently be defined as follows: a nontrivial solution x of (1.1) is called oscillatory
if it has infinitely many (isolated) generalized zeros in [τ,∞). By the Sturm-type separation
theorem [12, theorem 5.59], one solution of (1.1) is (non)oscillatory iff every solution of (1.1)
is (non)oscillatory. The proof is easy: suppose x is a nonoscillatory solution of (1.1), i.e.,
xxσ > 0 on [T ,∞) for some T > 0. Let y be any solution of (1.1) such that x and y are
linearly independent. Then Dq(y/x) = W(x, y)/(xxσ ) by the quotient rule (2.3), where the
Wronskian W(x, y) actually is equal to a nonzero constant (use the product rule (2.2) to verify
this). Hence y/x is eventually strictly monotone, and therefore it is eventually of one sign.
Thus (yyσ )/(xxσ ) = (y/x)(yσ /xσ ) is eventually positive, and hence yyσ > 0 eventually,
meaning that y is nonoscillatory as well.

Proof (of theorem 3). In order to set the stage, we use (2.4) to rewrite the equation

D2
qx +

b

qt2
xσ = 0 (3.1)

as the Euler–Cauchy q-difference equation

qt2D2
qx + b(q − 1)tDqx + bx = 0. (3.2)

Note that (3.2) is of the form (2.5) with a = (q − 1)b and b ∈ R. By (2.9),

r = q + 1 − a(q − 1)

2
= q + 1 − b(q − 1)2

2

= √
q − (q − 1)2

2

[
b − 1

(
√

q + 1)2

]

= −√
q − (q − 1)2

2

[
b − 1

(
√

q − 1)2

]
(3.3)
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and

r2 − d = q − a(q − 1) + b(q − 1)2 = q �= 0

so that (3.2) clearly satisfies (2.6). We calculate the crucial quantity d:

d = (q − 1)2

[(
a − 1

2

)2

− b

]

= (q − 1)2

4
[b2(q − 1)2 − 2b(q − 1) + 1 − 4b]

= (q − 1)2

4
[b2(q − 1)2 − 2b(q + 1) + 1]

= (q − 1)4

4

[
b2 − b

2(q + 1)

(q − 1)2
+

1

(q − 1)2

]

= (q − 1)4

4

[
b −

(
1√

q + 1

)2
] [

b −
(

1√
q − 1

)2
]

.

First, d = 0 happens if and only if

b =
(

1√
q + 1

)2

or b =
(

1√
q − 1

)2

.

If b = 1/(
√

q + 1)2, then r = √
q by (3.3), and, taking into account the second part of

theorem 4, the two solutions

(
√

q)logq t = √
t and

√
t ln t are nonoscillatory,

and hence (3.2) is nonoscillatory. If b = 1/(
√

q − 1)2, then r = −√
q by (3.3), and, again

taking into account the second part of theorem 4, the two solutions

(−√
q)logq t = (−1)logq t

√
t and (−1)logq t

√
t ln t are oscillatory,

and hence (3.2) is oscillatory. Next, d > 0 happens if and only if

b <

(
1√

q + 1

)2

or b >

(
1√

q − 1

)2

.

If b < 1/(
√

q + 1)2, then r >
√

q by (3.3), and, taking into account the first part of theorem 4,
the solution

(r +
√

d)logq t = t logq (r+
√

d) is nonoscillatory,

and hence (3.2) is nonoscillatory. If b > 1/(
√

q − 1)2, then r < −√
q by (3.3), and, again

taking into account the first part of theorem 4, the solution

(r −
√

d)logq t = (−1)logq t t logq (
√

d−r) is oscillatory,

and hence (3.2) is oscillatory. Finally, d < 0 happens if and only if(
1√

q + 1

)2

< b <

(
1√

q − 1

)2

.

Then, in this case, with the notation from the third part of theorem 4,

r ∈ (−√
q,

√
q), |α| = √

q, and cos θ = r√
q

= q + 1 − b(q − 1)2

2
√

q
,
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1
(
√
q+1)2

1
4

1
(
√
q−1)20 1

b

oscillatory

Figure 1. Oscillation and nonoscillation.

we have that the two solutions√
t cos(θ logq t) and

√
t sin(θ logq t) are oscillatory,

and hence (3.2) is oscillatory. Altogether we have shown that (3.2), and hence (3.1),

is oscillatory if and only if b >
1

(
√

q + 1)2
.

Figure 1 illustrates this fact and the proof above, which is now complete. �

The basic statement of Sturm’s comparison theorem [12, theorem 5.60] can be formulated
as follows.

Theorem 5 (Sturm’s comparison theorem). Consider the equation

D2
qx + r1(t)x

σ = 0 on T = qN0 . (3.4)

Suppose

r(t) � r1(t) for all t ∈ T.

Then, if (3.4) is nonoscillatory on T, then so is (1.1).

Our q-calculus version of Kneser’s theorem now reads as follows.

Theorem 6 (Kneser’s theorem). The following statements hold:

(i) If

lim sup
t→∞

{tσ (t)r(t)} <
1

(
√

q + 1)2
,

then (1.1) is nonoscillatory on qN0 .
(ii) If

lim inf
t→∞ {tσ (t)r(t)} >

1

(
√

q + 1)2
,

then (1.1) is oscillatory on qN0 .

Proof. By the Sturm comparison theorem, theorem 5, in order to show the first part, it suffices
to show that for b < 1/(

√
q + 1)2, the q-difference equation (3.1) is nonoscillatory and, in

order to show the second part, that for b > 1/(
√

q + 1)2, (3.1) is oscillatory. However, both
of these facts have been shown in theorem 3, and therefore the proof is complete. �

4. Extensions

We are now going to generalize theorem 3. This time we let γ > 0 and consider the equation

Dq

(
Dqx

xγ (t)

)
+

b

tσ (t)xγ (σ (t))
xσ = 0. (4.1)
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Using the quotient rule (2.3) and formula (2.4), we can rewrite the left-hand side of (4.1) as

1

tσ (t)xγ (σ (t))

{
qt2D2

qx +

[
b(q − 1) − q(γ − 1)

q − 1

]
Dqx + bx

}
,

i.e., x solves (4.1) if and only if x solves the Euler–Cauchy q-difference equation

qt2D2
qx +

[
b(q − 1) − q(γ − 1)

q − 1

]
Dqx + bx = 0. (4.2)

Note that (4.2) is of the form (2.5) with a = (q − 1)b − q(γ − 1)/(q − 1) and b ∈ R. Thus
by (2.9),

r = qγ + 1 − b(q − 1)2

2
and r2 − d = qγ �= 0

so that (4.2) clearly satisfies (2.6).
We remark that (4.2) is the same as (3.2) in the case of γ = 1. The strategy of the proof

of our generalization of theorem 3 will be similar as in section 3. Hence we will not repeat the
details from the proof of theorem 3 as given in section 3 but rather just supply the following
calculation for d:

4

(q − 1)2
d = (a − 1)2 − 4b =

[
(q − 1)b − γ q − 1

q − 1

]2

− 4b

= (q − 1)2b2 − 2(q − 1)

(
γ q − 1

q − 1

)
b +

(
γ q − 1

q − 1

)2

− 4b

= (q − 1)2b2 + (1 + cq)2 − 2b(qγ + 1)

= (q − 1)2b2 +

(
qγ − 1

q − 1

)2

− 2b(qγ + 1)

= (q − 1)4b2 + (qγ − 1)2 − 2b(q − 1)2(qγ + 1)

(q − 1)2

= (q − 1)4b2 + (
√

qγ − 1)2(
√

qγ + 1)2 − b(q − 1)2[(
√

qγ − 1)2 + (
√

qγ + 1)2]

(q − 1)2

= [(q − 1)2b − (
√

qγ + 1)2][(q − 1)2b − (
√

qγ − 1)2]

(q − 1)2

=
[
b −

(√
qγ + 1

q − 1

)2
] [

b −
(√

qγ − 1

q − 1

)2
]

(q − 1)2.

Therefore we arrive at the following result.

Theorem 7. Let γ > 0. The q-difference equation

Dq

(
Dqx

γ logq t

)
+

b

γ tσ (t)γ logq t
xσ = 0 is oscillatory iff b >

(√
qγ − 1

q − 1

)2

.

Note how theorem 3 is a special case of theorem 7 by letting γ = 1.
As in section 3, it is now easy to obtain Kneser-type oscillation criteria for q-difference

equations appearing as

Dq(p(t)Dqx) + r(t)xσ = 0. (4.3)
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Theorem 8 (Kneser’s theorem). Let γ > 0. Then we have the following:

(i) If

lim sup
t→∞

{γ tσ (t)γ logq t r(t)} <

(√
qγ − 1

q − 1

)2

and lim inf
t→∞ {p(t)γ logq t } > 1,

then (4.3) is nonoscillatory on qN0 .
(ii) If

lim inf
t→∞ {γ tσ (t)γ logq t r(t)} >

(√
qγ − 1

q − 1

)2

and lim sup
t→∞

{p(t)γ logq t } < 1,

then (1.1) is oscillatory on qN0 .

Another special case of theorem 7 is presented next. To state this corollary, we recall the
notation (see e.g., [23, formula (3.8)])

[y]q := qy − 1

q − 1
for y ∈ R.

Corollary 1. Let β ∈ R. The q-difference equation

Dq(t
βDqx) +

b

t (σ (t))1−β
xσ = 0 is oscillatory iff b >

[
1 − β

2

]2

q

.

Proof. In theorem 7, let γ = 1 + (q − 1)[−β]q . Then

γ = 1 + (q − 1)
q−β − 1

q − 1
= 1 + q−β − 1 = q−β

and √
qγ − 1

q − 1
=

√
q1−β − 1

q − 1
= q(1−β)/2 − 1

q − 1
=

[
1 − β

2

]
q

.

The proof is now complete by applying theorem 3. �

Again note how theorem 3 is a special case of corollary 1 by letting β = 0 and observing
the ‘q-analogue of 1/2’ as [1/2]q = 1/(

√
q + 1).
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